Numerical Analysis of Parabolic p-Laplacian: Approximation of Trajectories

نویسنده

  • Ning Ju
چکیده

The long time numerical approximation of the parabolic p-Laplacian problem with a time-independent forcing term and sufficiently smooth initial data is studied. Convergence and stability results which are uniform for t ∈ [0,∞) are established in the L2, W 1,p norms for the backward Euler and the Crank–Nicholson schemes with the finite element method (FEM). This result extends the existing uniform convergence results for exponentially contractive semigroups generated by some semilinear systems to nonexponentially contractive semigroups generated by some quasilinear systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solutions to Bean’s Critical-state Model for Type-ii Superconductors

In this paper we study the numerical solution for an p−Laplacian type of evolution system Ht + ∇ × [|∇ × H|p−2∇ × H] = F(x, t), p > 2 in two space dimensions. For large p this system is an approximation of Bean’s critical-state model for type-II superconductors. By introducing suitable transformation, the system is equivalent to a nonlinear parabolic equation. For the nonlinear parabolic proble...

متن کامل

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

Finite Element Approximation of the Parabolic Fractional Obstacle Problem

We study a discretization technique for the parabolic fractional obstacle problem in bounded domains. The fractional Laplacian is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation posed on a semi-infinite cylinder, which recasts our problem as a quasi-stationary elliptic variational inequality with a dynamic boundary condition. The rapid decay of the solution suggest...

متن کامل

Parabolic Quasi-variational Inequalities with Gradient-Type Constraints

The paper addresses existence, uniqueness and approximation methods for a certain class of nonlinear parabolic quasi-variational inequality (QVI) problems with special gradient-type constraints. Problems of this nature are common in the mathematical modeling of superconductors and ionization in electrostatics. The results are developed based on monotone operator theory , C 0 semigroup methods a...

متن کامل

Some Numerical Comparisons of Three-body Trajectories with Patched Two-body Trajectories for Low Thrust Rockets

The n-body problem for low-thrust vehicles with optimal thrust control is formulated for the case of constant thrust with coast. A successive two-body approximation to the n-body problem is also developed under the assumption of tangential thrust during the planetocentric leg. This approximation involves one arbitrary parameter the planetocentric radius at the patch point whose best value can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2000